Indian Statistical Institute

Midterm Examination 2019-2020

Analysis II, B.Math First Year

Time: 2.45 Hours Date: 24.02.2020 Maximum Marks: 100 Instructor: Jaydeb Sarkar

Note: (i) Answer all questions. (ii) $R[a,b] = the \ set \ of \ all \ Riemann \ integrable \ functions \ on \ [a,b].$

Q1. (15 marks) It is true that $|f| \in R[a,b] \Rightarrow f \in R[a,b]$? Justify your answer.

Q2. (15 marks) Define $f:[0,1]\to\mathbb{R}$ by

$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}.$$

Prove that $f \notin R[0,1]$.

Q3. (20 marks) Prove that

(i)
$$\ln x \le 2(\sqrt{x} - 1)$$
 $(\forall x \ge 1)$, and (ii) $\int_0^1 x \sin^2 \frac{1}{x} dx \le \frac{1}{2}$.

Q4. (20 marks) Suppose

$$f(x) = \int_0^x (x - t)e^{\sin(\frac{t}{2020})^2} dt \qquad (\forall x \in \mathbb{R}).$$

Compute the value of f''(2020). Justify all steps in your calculation.

Q5. (20 marks) Let (X, d) be a metric space. If $x \in X$ and $A \subseteq X$, then prove that $d(x, A) = d(x, \bar{A})$.

Q6. (20 marks) Let C_0 and C_1 be disjoint closed subsets of \mathbb{R}_u . Prove that there exists a continuous function $f: \mathbb{R}_u \to [0,1]$ such that

$$f(x) = \begin{cases} 0 & \text{if } x \in C_0 \\ 1 & \text{if } x \in C_1. \end{cases}$$

1